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Recognition of DNA Base Mismatches by a photoactivatior?? have proven to be versatile frameworks for

Rhodium Intercalator the design of novel DNA recognition agents. Base mismatch
recognition poses a new challenge in the design of specific DNA

Brian A. Jackson and Jacqueline K. Barton* binding molecules. Unlike the recognition of a base sequence

© s : : . : where interacting functionalities can be placed to “read” the
Dizision of Ch((a:n;;;gryngnﬁlgiTEtrglg?[rlzgglr:\;grlng order of the base¥, mismatch recognitFi)on must identify
Pasadena. California 911% mismatches independent of the bases involved. We have chosen
K to exploit the thermodynamic destabilizatigh3® near a
Receied July 23, 1997 ismatch site as a basis for site discrimination. [Rh(bpy)

DNA base mismatches arise during the course of genetic (CNTYSUF™ was designed as a derivative of the phi family of

recombination and replication as a consequence of enzymatic!”tem"jllators but with the broader four-ring chrysene for DNA

errors or DNA damagé? Although studies have been directed ntercalation. Molecular modeling suggested that this ligand,
toward unraveling the roles mismatch structéredynamics’ - unlike phi, is too large to intercalate easny into standard. DNA
and biochemistAPL% play in their recognition and repair, a base steps but that the locally perturbed site of a base mismatch

detailed chemical understanding of the process is still elusive. M9t accommod.at(i the large chrysene ring system.

As part of the effort to gain insight into natural recognition [Rh(bpy)z(chrysofz was synthesized by condensation of [Rh-
systems and to produce useful DNA probes, the design of (PPYR(NH3)2](PFe)a* with 5,6-chrysenequinofiby a method
molecules which site-specifically recognize mismatches is an 21@logous to that dE!Ve_|0|CJe3O|5 by Sargeson and co-workers (see
attractive experimental go#:® Strategies have exploited the Supporting Informatioriy:*> The mismatch binding proper-
isolated mismatch recognition proteigs hybridization of €S Of the separateti- andA-enantiomers were then examined
fluorescent conjugaté§;l’ DNA chip methodologie$?1 and in DNA_photocIeavage experiments on a set o_f 17-mer oI_|go-
differential chemical cleavage with reagents assaying for basenucleotides, each containing one DNA base mismatch (Figure

accessibility20-22 1). At 10 uM DNA duplex concentration, photoinduced
Here, we describe DNA mismatch recognition by a novel €l€avage by the rhodium complex is not apparent at B-form
rhodium intercalator, [Rh(bpy{chrysi)F* (chrysi= 5,6-chry- sites. Instead, the strongest cleavage intensity is observed with

senequinone diimine). The phenanthrenequinone diimine (phi) the A-enantiomer on the duplex containing the CC mismatch.

complexes of rhodiur®26 which bind DNA via intercalation  H€re, cleavage occurs to theside of the mismatch. Similar

in the major groov&28 and promote strand scission upon but_Ie_ss_, intense cleavage is observed at the other pyrlr’m_‘dlne
pyrimidine mismatches TT and TC. CA, the single purine
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Figure 1. (Top) A-[Rh(bpy)(chrysi)F*. (Bottom) DNA photocleavage

by A- and A-[Rh(bpy)(chrysi)F* on the 5-32P-end-labeled oligonucle-
otide duplex (the star indicates the position of the label). Molecular
Dynamics Phosphorimager scanned image of 20% denaturing poly-
acrylamide gel showing fragments after irradiation of duplexes:(d0
oligonucleotide) with 1uM A- or A-[Rh(bpy)(chrysi)F* in 50 mM

Tris, 20 mM NaOAc, 18 mM NaCl, pH 7.0. Each sample was
preequilibrated for 11 min before irradiation for 13 min at 365 nm
using an Oriel Hg Xe arc lamp. Gel lanes labeledtAG and C+ T

are standard MaxanGilbert sequencing reactioi.Mismatch se-
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Figure 2. Binding isotherm forA-[Rh(bpyk(chrysi)P" targeted to a
CC mismatch- containing oligonucleotide. Top inset: Excised gel bands
from a representative photocleavage titration experiment. The binding
constant was determined on a hairpin oligonucleotidecATCAT-
GTCCTGCCCTTTTTGGGCAGACATGATG-3 (bottom inset) con-
taining a single CC base mismatch (involved bases boldface). Photo-
cleavage reactions were performed at either 313 or 365 nm fer 7.5
15 min. The concentration of hairpin DNA varied fromx310-%° to
1 x 10~* M with the rhodium complex at 10-fold lower concentration.
Samples were eluted through 20% denaturing polyacrylamide gels and
the data analyzed using a Molecular Dynamics Phosphorimager and
ImageQuant software. Cleavage is observe $he CC mismatch on
both sides of the hairpin; only the cleavage band closest to the end
label (indicated by the arrow) was quantitated. Data from multiple trials
were normalized (open circles) and fit to a standard single binding site
binding model (solid line§’
mismatches are ordered (left to right) by decreasing thermo-
dynamic destabilization; in this set, the CC mismatch is the most

quences identified above each set of lanes correspond to XY basedestabilizing and GG is the least disrupti:*® Although

positions, andA or A indicates the enantiomer used to promote

photocleavage. All oligonucleotides were made using standard phos-

phoramidite chemistry and purified by reversed phase HPLC. They
were B-end-labeled withy-[3P]JATP (Dupont-NEN) and T4 poly-
nucleotide kinase (New England Biolabs).

underscore the different geometries likely to exist at the various
sites. Since the individual structures may lead to different
efficiencies of photocleavage, relative cleavage intensities do
not directly reflect relative binding affinities.

In a quantitative photocleavage titration on a 35-mer DNA
hairpin, the thermodynamic binding constant fo{Rh(bpy)-
(chrysi)P* at the CC mismatch was found to be 8.4(10LCP
M~L. (Figure 2). The binding affinity of the complex for its

possible variations in DNA photocleavage efficiency need to
be considered, it is interesting that significant cutting is observed
only at the more helix-destabilizing mismatches.

These results show that the destabilized structure distinctive
to a mispaired site can be exploited for the specific recognition
of DNA mismatches. This strategy may be applied in the
recognition of other sites of DNA damage or modification
involving thermodynamic disruption and could be useful in the
development of new molecular diagnostics or chemotherapeutic
agents. It is noteworthy that similar mechanisms of DNA
damage recognition are observed in cellular nucleotide excision
repair systemgl42
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